CSE Research Symposium

Friday, April 14, 2023 - 11:30 am
550 Assembly St, Room 2277

Graduate students will be selected by their advisor to present a research poster. Monetary awards will be given to the top 3 posters.

Agenda

Time Location Event
11:30 am – 12:45 pm

Room 2277

(If no seating is available in room 2277, please visit rooms 2265, 2267 and 2268)

Networking and refreshments
12:45 pm – 2:00 pm 2nd floor hallway Graduate student poster session
2:00 pm – 2:15 pm Break
2:15 pm – 4:00 pm Room 1400 (1st floor) 7 Minute Madness
4:00 pm – 4:20 pm Room 1400 (1st floor) Closing Notes and Poster Awards

 

Poster Session Authors

Poster Number Advisor Name Poster Title
1 Amit Sheth Towards Rare Event Prediction in Manufacturing Domain
2 Amit Sheth Alleviate: Artificial Intelligence Enabled Virtual Assistance for Telehealth: The Mental Health Case
3 Amit Sheth FACTIFY3M - A benchmark for multimodal fact verification with explainability through 5W Question-Answering
4 Amit Sheth and Forest Agostinelli Inductive Logic Programming for Explainable Artificial Intelligence
5 Biplav Srivastava Rating of AI Systems Through a Causal Lens
6 Biplav Srivastava Group Recommendation and a Case Study in Team Formation with ULTRA
7 Biplav Srivastava Planner Performance Improvement using Ontology
8 Chin-Tser Huang Smarkchain: An Amendable and Correctable Blockchain Based on Smart Markers
9 Chin-Tser Huang Investigation of 5G and 4G V2V Communication Channel Performance Under Severe Weather
10 Christian O'Reilly Deep Ensemble Learning: A Synergistic Approach for Ultrasonic Vocalization Analysis in Post-Traumatic Stress Disorder Study
11 Christian O'Reilly Characteristics of cerebrospinal fluid in Autism Spectrum Disorder (ASD): A systematic review
12 Christian O'Reilly and Amit Sheth Interpretable Machine Learning for Predicting the Likelihood of Autism from Infant ECG Recordings​​
13 Forest Agostinelli Explainable AI for Solving Pathfinding Problems through Collaborative Education
14 Ioannis Rekleitis SM/VIO: Robust Underwater State Estimation Switching Between Model-based and Visual Inertial Odometry
15 Ioannis Rekleitis Confined Water Body Coverage under Resource Constraints
16 Ioannis Rekleitis Weakly Supervised Caveline Detection For AUV Navigation Inside
Underwater Caves
17 Jianjun Hu crystalTransformer
18 Jianjun Hu Composition based Oxidation State Prediction of Materials using Deep Learning Language Model
19 Jianjun Hu DeepXRD, a Deep Learning Model for Predicting XRD spectrum from Material Composition
20 Jianjun Hu Scalable deeper graph neural networks for high-performance materials property prediction
21 Pooyan Jamshidi Partitioning and Mapping for ASIC AI Accelerators
22 Pooyan Jamshidi Not Just a Rose by Any Other Name: Differential Privacy as an Instrumentality of Effective Regulation Thwarting the Subterfuge of Differential Privacy by another Name and Undue Influence
23 Qi Zhang, Christopher Sutton Maximizing Learning Efficiency in Material Science through Domain Adaptation
24 Ramtin Zand Reliability-Aware Deployment of DNNs on In-Memory Analog Computing Architectures
25 Sanjib Sur MatGAN: Sleep Posture Imaging using Millimeter-Wave Devices
26 Sanjib Sur Towards Robust Pedestrian Detection with Roadside Millimeter-Wave Infrastructure
27 Sanjib Sur Outdoor Millimeter-Wave Picocell Placement using Drone-based Surveying and Machine Learning
28 Sanjib Sur Outdoor Small Scale Point Cloud Reconstruction Using Drone-based Millimeter-Wave FMCW Radar System and CFAR
29 Sanjib Sur MmSight: Millimeter-Wave Imaging on 5G Handheld Smart Devices
30 Sanjib Sur Enabling Integrated Networking and Activity Sensing in Indoor Millimeter-Wave Networks
31 Sanjib Sur mmWaveNet: Indoor Point Cloud Generation from Millimeter-Wave Devices
32 Sanjib Sur, Srihari Nelakuditi SSCense: A Millimeter-Wave Sensing Approach for Estimating Soluble Sugar Content of Fruits
33 Song Wang Few-shot 3D Point Cloud Semantic Segmentation via Stratified Class-specific Attention Based Transformer Network
34 Song Wang Parametric Surface Constrained Upsampler Network for Point Cloud
35 Song Wang MISF: Multi-level Interactive Siamese Filtering for High-Fidelity Image Inpainting
36 Stephen Fenner Implementing the fanout operations with simple pairwise interactions
37 Homayoun Valafar "Revolutionizing Cardiovascular Health: Harnessing the Power of Deep Learning for Automatic Calcification Calculation in Vascular Systems"
38 Homayoun Valafar Smartwatch-Based Smoking Detection Using Accelerometer Data and Neural Networks
39 Homayoun Valafar Analysis of cancer patients’ molecular and clinical data using Machine Learning approaches
40 Vignesh Narayanan On Safe and Usable Chatbots for Promoting Voter Participation
41 Vignesh Narayanan Building a Digital Twin for Information Environment
42 Yan Tong Unlocking the Potential of Consumer Wearables for Predicting Sleep in Children: A Device-Agnostic Machine Learning Approach
43 Yan Tong Cascade Feature Fusion Network for Facial Expression Recognition
44 Ramtin Zand Facial Expression Recognition at the edge: CPU vs GPU vs VPU vs TPU
45 Ramtin Zand Static American Sign Language Recognition Using Neuromorphic Hardware

 

7 Minute Madness

Number Time slot Speaker
1 2:15 – 2:22 Ramtin Zand
2 2:30 - 2:37 Pooyan Jamshidi
3 2:40 – 2:47 Sanjib Sur
4 2:50 – 2:57 Forest Agostinelli
5 3:00 – 3:07 Vignesh Narayanan
6 3:10 – 3:17 Ioannis Rekleitis
7 3:20 – 3:27 Song Wong (presented by Ping Ping cai)
8 3:30 – 3:37 Christian O’Reilly
9 3:40 – 3:47 Biplav Srivastava
10 3:50 – 3:57 Jianjun Hu
11 4:00 – 4:07 Yan Tong
12 4:10 – 4:17 Steve Fenner
13 4:20 – 4:27 Homayoun Valafar

 

Closing Notes and Poster Awards

4:30 – 4:45 Dr. Homayoun Valafar

Toward AI Augmented Healthcare

Tuesday, April 11, 2023 - 11:15 am
Innovation Center, 550 Assembly Street, Room 2277 (2nd floor)

Advances in artificial intelligence (AI) and the increasing digitization of healthcare data promise significant advances in disease understanding, therapeutic development, patient treatment and, ultimately, improvement in health outcomes. However, many technical and anthropological challenges must be addressed if AI is to fulfill this potential. In this talk, we will first discuss a conceptual framework for conducting AI based clinical decision support (CDS) research that includes qualitative research to understand clinician needs, AI method development and applications research, and aspects of implementation science to address barriers to system adoption. In the context of this framework, we will consider three research studies focused on AI utilization in healthcare applications: (1) development of a sepsis early warning system for neonatal intensive care units; (2) automated recognition of adverse event descriptions in social media and electronic health records (EHRs); and (3) subtyping of traumatic brain injury (TBI). For the sepsis study, we will discuss challenges related to AI systems that must continuously update predictions for patients including concerns over false alarm rate and model interpretability. Relative to adverse event detection, we will discuss natural language processing and deep learning methods. For TBI subtyping, we will see an application of unsupervised learning on EHR data and correlation between baseline subtypes and long-term outcomes. Along the way, we will discuss topics related to predictive model development, unsupervised learning, explainable AI, and the need for domain expert collaboration. Finally, we will discuss ideas for future directions for each of these studies.

Cybersecurity at Deere & Co

Wednesday, April 5, 2023 - 05:30 pm
Swearingen, Room 2A15/17

ACM Club and Cybersecurity Clubs with be hosting a guest speaker from John Deere on Wednesday, April 5th at 5:30 pm in Swearingen, Room 2A15/17.

The speaker is Josh Beck, Application Security Engineer, from their Raleigh office. Mr. Beck will discuss how Deere & Co approaches cybersecurity to protect tractors and other equipment. He will also discuss career paths into cybersecurity and software engineering.

For more information, please contact Diana StMarie at dstmarie@mailbox.sc.edu.

Measuring Wellbeing in Situated Context with Social Media and Multimodal Sensing: Promises and Perils

Tuesday, April 4, 2023 - 11:15 am
online

A core aspect of our social lives is often embedded in the communities we are situated in. Our shared experiences and social ties intertwine our situated context with our wellbeing. A better understanding of wellbeing can help devise timely support provisions. However, traditional forms of wellbeing measurements have limitations, motivating an increasing interest in supporting wellbeing through passive sensing technologies. Parallelly, social media platforms enable us to connect and express our personal and social lives with others. Given its ubiquity, social media can be considered a “passive sensor” to obtain naturalistic data, which can also be combined with various multimodal sensing to comprehensively measure wellbeing. However, wellbeing sensing technologies can lead to unintended outcomes and cause harms. Therefore, despite the potential, are we ready to deploy these wellbeing sensing technologies in the real world yet?

In this talk, Koustuv Saha will present theory-driven computational and causal methods for leveraging social media in concert with complementary multisensor data to examine wellbeing, particularly in situated communities such as college campuses and workplaces. He will also interrogate the meaningfulness of the data and inferences and reflect on how these approaches can potentially be misinterpreted or misused without additional considerations. To bridge the gap between the theoretical promise and practical utility, he will present the importance of evaluating the needs, benefits, and harms of wellbeing sensing technologies in practice. This talk will propel the vision toward questioning the underlying assumptions and in responsible design and deployment of wellbeing sensing technologies (if at all) for situated communities and the future of work.

Koustuv Saha was a Senior Researcher at Microsoft Research, Montreal, in the Fairness, Accountability, Transparency, and Ethics in AI (FATE) group. He completed his Ph.D. in Computer Science from Georgia Tech in 2021, advised by Prof. Munmun De Choudhury. His research interest is in social computing, computational social science, human-centered machine learning, and FATE. He adopts machine learning, natural language, and causal inference analysis to examine human behavior and wellbeing using different forms of digital data, including social media and multimodal sensing data. His work questions the underlying assumptions of data-driven inferences and the possible harms such inferences might lead to. His research is situated in an interdisciplinary and human-centered context and bears implications for various stakeholders. His work has been published at various venues, including CHI, CSCW, ICWSM, IMWUT (UbiComp), Scientific Reports, JMIR, FAT* (now FAccT), among others. He is a recipient of the 2021 Outstanding Doctoral Dissertation Award from the College of Computing at Georgia Tech, Foley Scholarship Award from the GVU Center, Snap Research Fellowship, and a finalist of the Symantec Graduate Fellowship. His research has won the Outstanding Study Design Award at ICWSM, and has been covered by several media outlets, including the New York Times, Vox, CBC Radio, NBC, 11Alive, the Hill, and the Commonwealth Times. During his Ph.D., he did research internships at Snap Research, Microsoft Research, Max Planck Institute, and Fred Hutch Cancer Research. Earlier, he completed his B.Tech (Hons.) in Computer Science and Engineering from the Indian Institute of Technology (IIT) Kharagpur. He was awarded the NTSE Scholarship by the Govt. of India, and he has six years of overall Industry research experience.

Link to his website:

https://koustuv.com/

Join Zoom Meeting

https://us02web.zoom.us/j/84301337375?pwd=aDZvZkxNYzFsMk1EdDR2dFY0QVRLUT09

An Introduction to Neuromorphic Computing and Spiking Neural Networks (SNNs)

Friday, March 24, 2023 - 12:00 pm
online

Time: Mar 24, 2023 12:00 PM Eastern Time (US and Canada)

Abstract: This short talk will be on Neuromorphic Computing by Ramashish Gaurav (Ram for short). He is a Ph.D. candidate at Virginia Tech - ECE, working on Spiking NeuralNetworks (SNNs) -- a subdomain of Neuromorphic Computing, under the supervision of Prof. Yang (Cindy) Yi at MICS. The talk will be an introduction to Neuromorphic Computing, followed by spiking networks and how they relate to the current generation of neural networks. It will then steer towards recent progress in SNNs, and will be concluded with opportunities and challenges towards energy-efficient AI. Ram's blog can be found at https://r-gaurav.github.io/

Join Zoom Meeting
https://us06web.zoom.us/j/87177520455?pwd=N2dsT052bmNoOXhHcVBvQmZ6M3ljU…

Meeting ID: 871 7752 0455

Facial Expression Recognition Using Edge AI Accelerators

Wednesday, March 15, 2023 - 10:00 am
Room 2267 Innovation building

DISSERTATION DEFENSE 

Author : Heath Smith

Advisor : Dr. Ramtin Zand

Date : March 15, 2023 

Time: 10:00 am  

Place : Room 2267 Innovation building

Abstract 

Facial expression recognition is a popular and challenging area of research in machine learning applications. Facial expressions are critical to human communication and allow us to convey complex thoughts and emotions beyond spoken language. The complexity of facial expressions creates a difficult problem for computer vision systems, especially edge computing systems. Current Deep Learning (DL) methods rely on large-scale Convolutional Neural Networks (CNN) which require millions of floating point operations (FLOPS) to accomplish similar image classification tasks. However, on edge and IoT devices, large-scale convolutional models can cause problems due to memory and power limitations. The intent of this work is to propose a neural network architecture inspired by deep CNNs which is tuned for deployment on edge devices and small-form-factor edge AI accelerators. This will be carried out by strategically reducing the size of the network while still achieving good discrimination between classes. Additionally, performance metrics such as latency, accuracy, throughput, and power consumption will be captured and compared with several popular deep CNN models. It is expected that there will be trade-offs between network size and performance when the model is deployed and running model inference on edge AI accelerators such as the Intel Movidius Neural Compute Stick II and the NVIDIA Jetson Nano GPU accelerator. An additional benefit of smaller-scale convolutional models is that they are better suited to be converted into spiking neural networks and deployed on neuromorphic hardware such as the Intel Loihi neuromorphic chip. Furthermore, this work will also examine various image processing techniques across multiple datasets in an effort to increase the performance of the edge-efficient model.

Learning Analytics Through Machine Learning and Natural Language Processing 

Wednesday, March 15, 2023 - 08:00 am
online

DISSERTATION DEFENSE 

Author : Bokai Yang

Advisor : Dr. John Rose

Date : March 15, 2023 

Time: 8:00 am  

Place : Virtual

Meeting Link 

Abstract 
The increase of computing power and the ability to log students’ data with the help of the computer-assisted learning systems has led to an increased interest in developing and applying computer science techniques for analyzing learning data. To understand and investigate how learning-generated data can be used to improve student success, data mining techniques have been applied to several educational tasks. This dissertation investigates three important tasks in various domains of educational data mining: learners’ behavior analysis, essay structure analysis and feedback providing, and learners’ dropout prediction. The first project applied latent semantic analysis and machine learning approaches to investigate how MOOC learners’ longitudinal trajectory of meaningful forum participation facilitated learner performance. The findings have implications on refining the courses’ facilitation methods and forum design, helping improve learners’ performance, and assessing learners’ academic performance in MOOCs. The second project aims to analyze the organizational structures used in previous ACT test essays and provide an argumentative structure feedback tool driven by deep learning language models to better support the current automatic essay scoring systems and classroom settings. The third project applied MOOC learners’ forum participation states to predict dropouts with the help of hidden Markov models and other machine learning techniques. The results of this project show that forum behavior can be applied to predict dropout and evaluate the learners’ status. Overall, the results of this dissertation expand current research and shed light on how computer science techniques could further improve students’ learning experience.

Adversarial Machine Learning and Defense Strategies 

Friday, February 24, 2023 - 01:00 pm
Storey Innovation Center, RM 2277 

Professor Dipankar Dasgupta 

Adversarial attacks can disrupt artificial intelligence (AI) and machine learning (ML) based system functionalities but also provide significant research opportunities. In this talk, Prof Dipankar Dasgupta from The University of Memphis will cover emerging adversarial machine learning (AML) attacks on systems and the state-of-the-art defense techniques. Prof Dasgupta will first discuss how and where adversarial attacks could happen in an AI/ML model and framework. He will then present the classification of adversarial attacks and their severity and applicability in real-world problems, including the steps to mitigate their effects, before illustrating the role of GAN in adversarial attacks and as a defense strategy. 

Finally, Prof Dasgupta will also discuss a dual-filtering (DF) strategy that could mitigate adaptive or advanced adversarial manipulations for a wide-range of ML attacks with higher accuracy. The developed DF software could be used as a wrapper to any existing ML-based decision support system to prevent a wide variety of adversarial evasion attacks. The DF framework utilizes two sets of filters based on positive (input filters) and negative (output filters) verification strategies that could communicate with each other for higher robustness. 

References:  

  • Dasgupta, D., Gupta, K.D. Dual-filtering (DF) schemes for learning systems to prevent adversarial attacks. Complex Intell. Syst. (2022). https://doi.org/10.1007/s40747-022-00649-1  
  • Gupta, K., & Dasgupta, D. Who is Responsible for Adversarial Defense? Workshop on Challenges in Deploying and monitoring Machine Learning Systems, (ICML 2021).  
  • K. D. Gupta, D. Dasgupta and Z. Akhtar, "Applicability issues of Evasion-Based Adversarial Attacks and Mitigation Techniques," 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia, 2020, pp. 1506-1515, doi: 10.1109/SSCI47803.2020.9308589. 

Dr. Dipankar Dasgupta is a professor of Computer Science at the University of Memphis since 1997, an IEEE Fellow, an ACM Distinguished Speaker (2015-2020) and an IEEE Distinguished Lecturer (2022-2024). Dr. Dasgupta is known for his pioneering work on the design and development of intelligent solutions inspired by natural and biological processes. During 1990-2000, he extensively studied different AI/ML techniques and research in the development of an efficient search and optimization method (called structured genetic algorithm) has been applied in engineering design, neural-networks, and control systems. He is one of the founding fathers of the field of artificial immune systems (a.k.a Immunological Computation) and is at the forefront of applying bio-inspired approaches to cyber defense. His notable works in digital immunity, negative authentication, cloud insurance modeling, dual-filtering and adaptive multi-factor authentication demonstrated the effective use of various AI/ML algorithms. His research accomplishments and achievements have appeared in Computer World Magazine, NASA’s website, and in local TV Channels and Newspapers. 

Dr. Dasgupta has authored four books, 5 patents (including 2 under submissions) and has more than 300 research publications (20,000 citations as per google scholar) in book chapters, journals, and international conference proceedings. Among many awards, he was honored with the 2014 ACM-SIGEVO Impact Award for his seminal work on negative authentication, an AI-based approach. He also received five best paper awards in different international conferences and has been organizing IEEE Symposium on Computational Intelligence in Cyber Security at SSCI since 2007. Dr. Dasgupta is an ACM Distinguished Speaker, regularly serves as panelist and keynote speaker and offers tutorials in leading computer science conferences and have given more than 350 invited talks in different universities and industries. 

Utilizing Deep Learning Methods in the Identification and Synthesis of Gene Regulations 

Monday, February 6, 2023 - 10:30 am

DISSERTATION DEFENSE 

Author : Jiandong Wang

Advisor : Dr. Jijun Tang

Date : Feb 6, 2023 

Time: 10:30 am  

Place : Virtual

Meeting Link

 

Abstract 

Gene expression is the fundamental differentiation and development process of life. Although all cells in an organism have essentially the same DNA, cell types and activities vary due to changes in gene expression. Gene expression can be influenced by many gene regulations. RNA editing contributes to the variety of RNA and proteins by allowing single nucleotide substitution. Reverse transcription can alter the expression status of genes by inducing genetic diversity and polymorphism via novel insertions, deletions, and recombination events. Gene regulation is critical to normal development because it enables cells to respond rapidly to environmental changes. However, identifying gene regulations from genome data remains challenging due to the repetitive nature of eukaryotic genomes and their high structural diversity.

Deep learning techniques emerged in the 2000s and quickly gained traction in a variety of disciplines due to their unparalleled prediction performance on large datasets. Since then, numerous applications in computational biology have been proposed, including image resolution enhancement and analysis, the detection of DNA function, and protein structure prediction. As a result, deep learning is widely regarded as a promising technique for advancing bioinformatics perspectives. In this dissertation, we explore deep learning-based methods to solve the following gene regulation problems: 1) RNA editing identification, 2) novel LINE-1 retrotransposon gene synthesis, and 3) RNA editing identification and classification across tissues. 

First, we took the RNA editing identification task as an example to fully explore deep learning-based methods for solving gene regulation problems. While millions of RNA editing sites have been reported in the human genome, far more sites are believed to be editable and still need to be identified. We constructed convolutional neural network (CNN) models to predict human RNA editing events in both Alu regions and non-Alu regions. Experiment results showed that our method achieved outstanding performance in two validation datasets. We ported our CNN models to a web service named EditPredict. In addition to the human genome, EditPredict tackles the genomes of other model organisms, including the bumblebee, fruit fly, mouse, and squid genomes.

Second, we explored the advantages of deep learning methods in synthesizing novel genes. Long interspersed nuclear elements (LINE-1) retrotransposons are the only autonomously active transposable elements. While numerous bioinformatics methods have been developed to assist in detecting and classifying LINE-1 retrotransposons, there are still limitations in terms of reliability, precision, and efficiency. We proposed an interpretable generative adversarial network to learn the operation pattern of the LINE-1 retrotransposon and then generate synthetic sequences up to 201 nucleotides. Experimental results showed that the synthetic sequences generated by our model are highly similar to those of natural LINE-1 retrotransposons. We also optimized the generated sequences for desired properties, such as sequence structure for a particular biological function and protein secondary structure.

Third, we extended our dissertation by using deep learning methods to identify and classify RNA editing across human tissues. It is known that RNA editing varies across different tissues. Our study can be divided into two major parts: RNA editing similarity across human tissues and RNA editing specificity across human tissues. We analyzed the distribution of RNA editing and presented the atlas, comprising millions of A-to-I events identified in six tissues. Then, we used a transfer learning technique and hybrid models to identify and classify the RNA editing across tissues, respectively. Our models achieved relatively good identification and classification performances. At last, we calculated the RNA editing events associated with human disorders and categorized them into different groups. We found that specific RNA editing events are consistently associated with specific human tissue diseases.